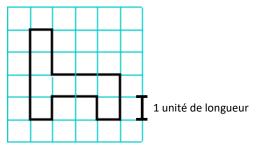
<u>Chapitre 10 :</u> **PÉRIMÈTRE ET AIRE**


I) Périmètre d'un polygone :

1) Définition : Périmètre :

Le **périmètre** d'une figure est la **longueur** de son contour, dans une unité de longueur donnée.

Exemple:


Pour calculer le périmètre d'un **polygone**, on effectue la somme des longueurs des côtés du polygone.

Le périmètre de cette figure est égal à 18 u.l. (1+2+3+2+1+1+2+1+1+4)

Exercice:

En prenant comme unité de longueur la longueur d'un carreau, prouver que les deux figures ci-dessous ont le même périmètre.

2) Définition : Unité de longueur usuelle :

L'unité internationale pour la mesure de la longueur est le mètre (m).

Exemple:

- 1. Une pièce de monnaie a une épaisseur de 2 mm.
- 2. En général, une règle d'élève fait entre 20 et 30 cm de long.
- 3. Un « double-décimètre » est une règle de vingt centimètres de long.
- 4. Un voiture citadine mesure environ 4 m.
- 5. Une maison peut mesurer 1 dam de côté (10 m de côté).
- 6. Un terrain de football mesure environ 1 hectomètre (100 m).
- 7. En passant par la D468,il y a 2,7 km entre Gerstheim et Obenheim.

Exercice:

Trouver d'autres exemples d'utilisation des unités métriques.

3) Exemple de conversion d'unité de périmètre :

Enoncé: Convertir 30,6 cm en dam.

Correction détaillée :

Pour convertir des longueurs, on procède en trois étapes :

1. On place la virgule dans le tableau suivant dans l'unité de départ ;

km	hm	dam	m	dm	cm	mm
					,	

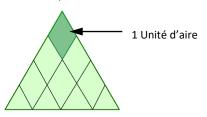
2. On place le nombre dans le tableau en respectant la place de la virgule ;

km	hm	dam	m	dm	cm	mm
				3	0 ,	6

3. On déplace la virgule dans l'unité souhaitant en ajoutant des 0 si nécessaires.

km	hm	dam	m	dm	cm	mm	
		0 ,	0	3	0 ,	6	

4. On obtient : 30,6 cm = 0,0306 dam.


II) Aire d'un polygone:

1) Définition : Aire :

L'aire d'une figure est la mesure de sa surface dans une unité de surface donnée.

Exemple:

Pour calculer l'aire d'une figure, on calcule la quantité d'unités d'aires qui recouvrent cette surface.

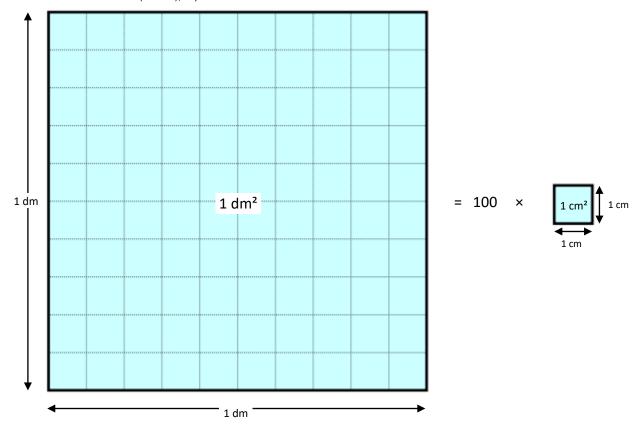
L'aire de la figure verte est égale à 8 unités d'aire. (6 unités d'aires entières + 4 moitiés)

Exercice:

En prenant comme unité d'aire la surface recouverte par un carreau, prouver que les deux figures ci-dessous, n'ont pas la même aire.

Remarque:

Les figurent de l'exercice précédent ont le même périmètre mais pas la même aire.


: Il n'y a pas de lien de proportionnalité entre le périmètre et l'aire d'une figure.

2) Définition : Unités d'aire usuelles :

L'unité internationale pour la mesure d'une surface est le mètre carré (m²) Un 1 m² est la **surface** recouverte par un carré de côté 1 m.

Exemple:

Dans un décimètre carré (1 dm²), il y a 100 centimètre carré.

Exercice:

A ton avis, quelle unité utilise-t-on pour exprimer la surface :

- a. d'un appartement
- b. d'un timbre
- c. d'une table
- d. d'une feuille de cahier
- e. d'un pays

3) Formules d'aire des polygones usuels :

Figure	Dessin	Formule d'aire	Justification
Rectangle	e f	L×ℓ	Dans le rectangle ci-dessous, il y a 3 lignes de 4 carreaux. A = L × l = 3 cm × 4 cm = 12 cm ²
Carré		$c \times c$	Un carré est un rectangle particulier. Dans le carré ci-dessous, il y a 4 colonnes de 4 carreaux. $A = \mathbf{c} \times \mathbf{c}$ $= 4 \text{ cm} \times 4 \text{ cm}$ $= 16 \text{ cm}^2$
Triangle Rectangle		$\frac{a \times b}{2}$	Un triangle rectangle est un demi-rectangle. Pour calculer son aire, on calcule l'aire du triangle rectangle et on divise par 2. $A = \frac{a \times b}{2}$ $= \frac{3 \text{ cm} \times 4 \text{ cm}}{2}$ $= \frac{12 \text{ cm}^2}{2}$ $= 6 \text{ cm}^2.$

Figure	Dessin	Formule d'aire	Justification
Triangle quelconque		$\frac{b \times h}{2}$	Un triangle quelconque est un demi-rectangle de longueur sa base et de largeur sa hauteur. $A = \frac{b \times h}{2}$ $= \frac{10 \text{ cm} \times 6 \text{ cm}}{2}$ $= \frac{60 \text{ cm}^2}{2}$ $= 30 \text{ cm}^2.$

OExercice:

Tracer un triangle ABC de côté 5 cm, 7 cm, et 9 cm. Tracer la hauteur issue de A de ce triangle puis la mesurer. À l'aide de la mesure précédente, proposer une valeur approchée de l'aire de ce triangle.

3) Exemple de conversion d'unité d'aires:

Enoncé: Convertir 5,8 m² en dm².

Correction détaillée :

Pour convertir des longueurs, on procède en trois étapes :

1. On place la virgule dans le tableau suivant dans l'unité de départ (toujours dans la colonne la plus à droite);

km²	hm²	dam²	m²	dm²	cm²	mm²
			,			

2. On place le nombre dans le tableau en respectant la place de la virgule ;

km²	hm²	dam²	m²	dm²	cm²	mm²
			5,	8		

3. On déplace la virgule dans l'unité souhaitant en ajoutant des 0 si nécessaires.

km²	hm²	dam²	m²	dm²	cm²	mm²
			5 _x	8 0,		

4. On obtient : $5.8 \text{ m}^2 = 580 \text{ dm}^2$.

Exercice :

Trouver d'autres exemples d'utilisation des unités métriques.

Remarque:

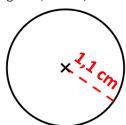
Pour restant cohérent avec le fait qu'il y ait 100 cm² dans un dm², etc.

il y a deux colonnes par unité dans le tableau de conversion des unités d'aire.

Le ...² de m² permet de s'en souvenir facilement.

III) Périmètre d'un cercle et aire d'un disque :

1) Propriété: Périmètre d'un cercle


Le périmètre d'un cercle est la longueur du tour du cercle. Le périmètre d'un cercle de rayon r est donnée par la formule :

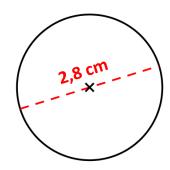
$$P = 2 \times \pi \times r$$

où π est un nombre proche de 3,14.

Exemple 1:

Calculer une valeur approchée au dixième près de la longueur, en cm, du cercle ci-dessous :

$$P = 2 \times \pi \times r$$


$$= 2 \times \pi \times 1,1$$

$$= 2,2 \pi$$

$$\approx 6.9 \text{ cm}$$

Exemple 2:

Calculer une valeur approchée au millième près de la longueur, en cm, du cercle ci-dessous :

est nécessaire de commencer par calculer le rayon du cercle : Rayon = Diamètre ÷ 2

Pour utiliser la formule, il

Rayon = Diamètre
$$\div$$
 2
= 2,8 cm \div 2
= 1,4 cm

$$P = 2 \times \pi \times r$$

$$= 2 \times \pi \times 1,4$$

$$= 2,8 \pi$$

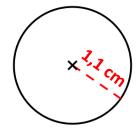
$$\approx 8,796 \text{ cm}$$

On remarque ici que pour calculer le périmètre d'un cercle, on pourrait aussi utiliser la formule :

Diamètre $\times \pi$

2) Propriété : Aire d'un disque

L'aire d'un disque est la surface du disque.


L'aire d'un disque de rayon r est donnée par la formule :

$$\mathcal{A} = \pi \times r^2 \qquad (= \pi \times r \times r)$$

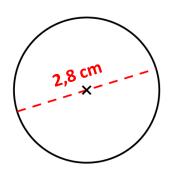
où π est un nombre proche de 3,14.

Exemple:

Calculer une valeur approchée au dixième près de l'aire, en cm², du disque ci-dessous :

$$\mathcal{A} = \pi \times r^{2}$$

$$= \pi \times r \times r$$


$$= \pi \times 1.1 \times 1.1$$

$$= 1.21 \pi$$

$$\approx 3.8 \text{ cm}^{2}$$

Exercice:

Calculer une valeur approchée au millième près de l'aire, en cm, du cercle ci-dessous :

